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We derive from exact integral equations of classical electrostatics some 
approximate expressions of the interaction energy of a point charge distribu- 
tion with a dielectric medium. We show how they can be used for computing 
the wave functions of  solvated species imbedded in cavities formed by inter- 
locking spheres in a polarizable continuum. We discuss the relation between 
these formulae and the ones proposed earlier on empirical basis and we 
especially emphasize the improvement that they bring out. 
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I. Introduction 

The thermodynamical approach to the solvaton problem brings into light the 
importance of the insertion energy concept [ 1, 2]. The insertion energy is the free 
energy change occurring when a molecule, in a given nuclear configuration, is 
transferred from the gas to the liquid phase without being polarised by its 
surrounding. For usual solvent polarization, it can be shown by means of statistical 
mechanics [3-5], that the insertion energy is simply related to the solute-solvent 
(s-S) electrostatic interaction energy which therefore appears to be the central 
quantity of  any theoretical development. 

The modelization of the solvent by a continuum characterized by its bulk macro- 
scopic properties (e.g. the dielectric constant) gives an useful mean for estimating 
the s-S interaction energy. Up to date, a lot of applications of the continuum 
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model has been reported in the field of quantum chemistry [5-8]. They can be 
roughly divided in two classes: that handling with the exact formulation of the 
Reaction Field (RF) theory and that using empirical representations mainly 
derived from the original Born formula [9]. In the first case, we are placed in 
the following dilemma: we can use explicit formulae for the only cavities having 
simple shape [10-13] or we must have recourse to heavy numerical integration 
techniques for more realistic cavities defined as a system of interlocking spheres 
[14, 15]. In the second case, the simplicity of the formulation is often paid by 
the unreality of the model or by the physically unacceptable character of its basic 
assumptions. 

An example of the deficiency of the model is provided by the generalized Born 
(GB) formula [16, 17]: as we will clearly show below, it is legitimate only for a 
system of charges lying in separated cavities of the solvent, so that its use to 
account for the solvaton of a molecule is not satisfactory. For the same grounds, 
this model is not able to reproduce the desolvaton effects (i.e., the effects due to 
the cavities overlap) which have some influence in the study of chemical associ- 
ations. In this respect, the solvaton model [18, 19] is no more suitable and the 
improvements suggested later [20] were not decisive. 

An attempt has been made for introducing the desolvaton effects by an adequate 
modification of the solvaton definition [21]. Following this idea, we have pro- 
posed an extension of the GB formula able to account for this effect [22]. 
Unfortunately, the preliminary calculations on solvated ionic pairs using the 
extended generalized Born (EGB) formula showed an unexpected behaviour at 
large distances [4]. This feature was initially attributed to a poor representation 
of the ionic species in the CNDO/2 approximation. 

The aim of this paper is to explain the real origin of this incorrect behaviour and 
to propose a completely satisfactory solution taking account carefully of the 
thermodynamic considerations (an outline of which is given in the appendix) 
and preserving the internal coherence of the theory as it was discussed in our 
preceding work [22]. After some essential preliminary results have been recalled 
at the beginning of the second section, we propose a mean for replacing some 
basic integral equations of the classical electrostatic theory of the dielectric media 
by a system of approximate linear equations. In the third section, different 
approximations of this system are proposed and compared with the empirical 
ones. We show how they can be used for the study of the chemical reactivity in 
solution and we examine in particular the behaviour of the energy of an ion pair 
at large separation. 

2. Polarization of a dielectric by a charge distribution 

2.1. Definition of the polarization charge densities [23] 

We consider a linear and isotropic dielectric for which the polarization vector 
P, that is the density of the dipole distribution, is related to the electric field 
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strength g by 

P = (~  - c o ) # ,  (1)  

where e is the dielectric constant. 

We know that the potential due to such a distribution is identical to the superposi- 
tion of potentials produced by a volume polarization charge density p* within 
the dielectric 

p* = -d iv  P (2) 

and by a surface polarization charge density tr* 

o'* = n P ,  (3) 

where n stands for a vector with length unity and direction along the outward 
normal of the dielectric surface S. 

For a homogeneous dielectric, we can write 

div P = (e - Co) d i v g  (4) 

and the Gauss theorem takes the form 

div 6" = p~ e, (5) 

where p is the source charge density: accordingly, the density p*, as given by 
the Eq. (2), vanishes if the source charges lie outside the dielectric volume. In 
particular, when the source charges are localized in a cavity created inside the 
dielectric medium, it is concluded that the potential due to the polarized dielectric 
can be replaced by that of the surface density or* alone. We will restrict ourselves 
to this special case in all that follows. 

2.2. Exact calculation of the surface polarization charge density 

It has been shown by E. Durand [24] that the polarization surface density ~r*(M) 
on each point M of S is formally given by the following integral equation 

Eod- 
= 2eo(nM" go(M))+  (1/2~-) Is cr*(N) e o r e ( m )  t l  M �9 N M  

Co- e N M  ~ dsN, (6) 

where go(M) is the electric field produced at M by the source charges. The 
second term of this expression represents the contribution due to the field 
produced at M by the elementary polarization charges lying around each point 
N of the surface S. It should be noted that, in general, the magnitude of this 
last term is comparable to that of the first one: it can be neglected only in the 
case of weak polarization. 

Although in most cases this equation cannot be solved exactly, it may provide a 
rigorous starting point for examining the validity of various analytical formulae 
which have been empirically proposed for simulating the polarization charge 
distribution on S. 



508 R. Constanciel 

For instance, if we perform the summation of both sides of the Eq. (6) over all 
points of the surface S, we obtain 

Is Is nM" N M  d e~ o'*(N) dsN - - - -  (7) 
eo - e N M  3 sM, 

where Q is the sum of the source charges inside the cavity and Q* is the total 
polarization charge on the surface S. The first term is immediately obtained by 
using the Gauss theorem. In the second one, we have 

fs nM" N M  d (8) 

because this integral is the solid angle by which the entire surface S is subtended 
from any of its point N. As a result, we find the well known Born formula [9] 

O*=-(1-eo /e )Q,  (9) 

which appears to be valid for internal cavity of any shape. 

2.3. Approximate calculation of local polarization charges 

Further informations about the local distribution of the total polarization charge 
Q* on the surface can be obtained through the preceding procedure by limiting 
the summation to a given part St of the surface S resulting from any partition of 
it in a finite number of elements i (i = a, b , . . .  ) such that 

[._JSt=S and S~nSj=~0S~. (10) 
i 

From the Eq. (6) we obtain 

E0-~- 
f o'*(M) dsM 

E 

E 0 - -  ~162 .]Si  

f Is =2Co 8o(g)nlvtds~+(1/2cr) o'*(N) dsN --~-;  asM. (11) 
d S i  i 

With the further assumption that the source of the electric field 8o is a point 
charge distribution 01 (I = A, B, . . . ), we have 

IM 
8o(M) = (1/4~'eo) ~ Q,'IM 3 (12) 

and the first term becomes 

fs nM �9 IM (2/47r) ~ Q, -~g,/~ as~  = (2/4r ~ Q,O,i, (13) 
i 

where f~1~ is the solid angle by which the surface element St is subtended from 
the point L 

In the same way as before, we obtain for the second term 

(1/27r) IsO-*(N) dSN fs d .~M=(1 /2~)  fsO-*(N) dsN f~N,. (14) 
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If we suppose that the density cr*(N) can be considered with a good accuracy 
as a constant quantity when the point N is moving anywhere on any of the 
surface elements, we may transform the second member of the Eq. (14) according 
to 

(1/2~) Y, fs cr*(N) dsNf~N,=(1/27r) ~ cr~ f s dSNf~N, 
J j �9 j 

and, in a second step, 

(1/27r) Y. t~*Sjf/j, = (1/2Ir) Y. O*(/j,, 
J J 

where we have introduced the quantity 

fij, = (f~j dsNfb,,)/sj, 

(15) 

(16) 

(17) 

which is the mean value of the solid angle by which the element S, is subtended 
from a point of Sj. 

By introducing the normalized quantities 

to,, = (1/4~r)lqt, (18) 

and 

o3j, = (1/2~r)(lj, (19) 

we may write the Eq. (11) in the simpler form 

l +kQ, 
1 - k  =2Y, Qfo~j,+Y, Q*o3j,, (20) 

J j 

where we have substituted the relative constant symbol k to the ratio e/co used 
up to now. Thus, the procedure which consists in replacing the continuous 
summation over a set of elementary surface parts by a discrete summation over 
a set of finite surface elements, leads to replace the exact integral equation (6) 
by the approximate system of linear equations 

Q * = I I  Q, (21) 

with 

2(1+k0 )--1 
II = \ 1 ~ - - - ~  - oh' �9 r ( 2 2 )  

We point out however that the Born relation (9) established for the total charges 
remains true independently on the choice of the surface partition. This can be 
easily verified by summing the Eq. (20) over all the surface elements 

l + k y ,  Q* ( ~  oSj,) (23) 



510 R. Constanciel 

and by using the sum rules 

Y, wj~ = ~ oSj~ = 1, (24) 
i i 

which express, according to the definition of ~ii  and ~ i  
i) that the solid angle by which the entire surface S is subtended from any internal 
point is equal to 4~. 
ii) that the mean solid angle by which the entire surface S is subtended from 
any point belonging to a given surface element is equal to 2~-. 

2.4. Approximate calculation of the interaction energy 

The exact expression of the interaction energy between the source charges (s) 
and the polarized dielectric (S) (i.e. the polarization density on the surface S) is 
[25] 

Is tr*( M) Vo( M) dsM. (25) ES-S= 

where Vo(M) is the potential at M of the electric field due to the source charges. 

Taking account of the partition of the surface S, we define a vector Vos the 
components of which are the mean values of the potential on each surface element. 
Thus we write 

E s-s= (Q*)'Vos. (26) 

Moreover, using the relation (21) and defining 

VR = II'Vos (27) 

we get 

E s-s= Q'VR. (28) 

This is an expression of the exact s-S interaction energy, valid if the source of 
the electric field is a set of point charges, in which each component (VR)I of VR 
is the so called reaction field (RF) [26] potential produced at I by the polarization 
charges. 

2.5. Approximate calculation of the reaction field potential 

For the sake of theoretical coherence, it is interesting to verify that, under the 
same assumptions that have been made above, the relation (27) can be derived 
independently from exact integral equations also given by E. Durand [27]. 
The first one 

+ Is 
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gives the total potential V (i.e. the sum of potentials due to the source charges 
and to the polarization charges) on each point M of the surface S. Once it has 
been solved, the second equation 

V(M) = Vo(M) + 1 - k f V(N) df~Ms (30) 
47"r .Is 

yields the total potential in any point M inside the cavity. 

The RF potential in any point M inside the cavity can be directly derived by 
making the substitution 

V(M) = Vo(M) + VR(M) (31) 

in the Eq. (30): we have then 

1 - k l s  VR(M) = --~-- V(N) daMN. (32) 

In the framework of the previous approximations this last equation can be 
immediately rewritten 

VR = (1 - k)~oVs, (33) 

where the components of the vector Vs are the mean values of the total potential 
on a given part of S. In the same way the Eq. (29) is transformed into (having 
in mind that, in this equation, the point M belongs to S) 

l + k  
- -7 -  Vs = Vos+ ~Vs, (34) 

which allows to express Vs in term of "Cos as follows 

2 / ' l + k  - 
VS = 1 " ~  l ~  -- ~ ) 1Vos. (35) 

Then we make sure that the relation (27) holds by inserting the Eq. (35) into the 
Eq. (33). 

2.6. Calculation of the approximate Green function 

Now we express that Vos is a linear combination of the source charges. 

Vos = FQ, (36) 

where the matrix elements F~I are the mean values of the potential created on a 
surface element S~ by an unitary charge lying at the point I inside the cavity. 
Thus we get for the interaction energy 

E s-s= QtGQ, (37) 

with 

G = l I t r  (38) 



512 R. Constanciel 

that is a quadratic expansion in term of  the source charges. By definition [28], 
G is the Green function of  the system: an element GIj is the potential created at 
! (resp. J )  by the polarization charge that an unitary point charge at J (resp. I)  
induces on S. These matrix elements can also be considered as the coulombic 
interaction between the source charges via the dielectric medium. 

The symmetry of the G matrix can be intuitively conjectured from its definition: 
it can also be rigorously proved by mathematical analysis [29]. However, we 
must stress the fact that the rigorous proof  holds for the exact Green function 
only; in particular, the procedure of  partition of  S that we used leads in general 
to a non symmetric approximate G matrix. 

The problem raised by this symmetry breaking can be easily solved by remarking 
that E s-s can be written in the equivalent form 

Es-s= Qt~Q, (39) 

where G is the symmetrized Green function 

= 1/2(G + Gt). (40) 

Naturally, this choice requires a new definition of the RF potential 

VR =GQ, (41) 

which is different from the initial ones. 

Although this redefinition can seem to be somehow artificial and physically 
unsound, we may argue that both expressions of the RF potential (i.e. the 
symmetrized and the initial ones) would be identical for an exact calculation and 
that their difference, strongly dependent on the approximations involved in the 
numerical calculations, can be substantially reduced by a proper choice of the 
surface partition (the difference will theoretically vanish if S is partitioned into 
an increasingly great number of small elements). 

Another argument for using G in place of G is provided by the application of 
the variational principle as we will show in the next section. 

3. Application to the calculation of solvent effects in quantum chemistry 

3.1. Variational calculation of the solute wave function 

Our purpose is to use the results of the preceding sections for the study of the 
electronic structure of  a polarizable solute molecule embedded in a polarizable 
solvent. If  the effect of the temperature on the electronic motion can be neglected, 
we can assume that the electronic structure of  the s-S system is determined by 
a wave function ~b. Here, we suppose that ~b is separable so that the electronic 
structure of  the solute is determined by a solute wave function ~: then, we will 
find the optimal r through a variational procedure in the Born-Oppenheimer 
(BO) approximation. 
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As it is shown in the Appendix, the effective hamiltonian of the s-S system (which 
depends only on the solute coordinates) is given by the Eq. (Al l )  or by the 
Eq. (A21) in the weak s-S interaction approximation (when (s) is in a preformed 
cavity). In the BO approximation, the first term of the Eq. (A21), which is the 
nuclear hamiltonian of the solute, reduces to the potential function U~(r): 
considered as a function of q~, parametrically depending on r, this term is the 
quantum mechanical energy, noted E~(q~), of the solute in the nuclear configur- 
ation r. The second term is one half the mean s-S electrostatic interaction energy: 
its calculation requires the knowledge of the averaged nuclear and electronic 
structure of the solvent in thermal equilibrium and polarized by the solute, fixed 
in the configuration r, with the electronic wave function ~o. In spite of its 
limitations, the continuum model provides a simple way for estimating this term 
as far as the solute can be replaced by a set of point charges Q. In what follows, 
we assume that the point charges Qr are the solute net charges (i.e. the difference 
between the nuclear and the electronic charges on each atom I)  and we estimate 
the mean s-S interaction energy by the Eq. (39) (we use the more explicit notation 
E~-S(Q)) in such a way that the solvent is characterized by its macroscopic 
dielectric constant and the shape of the cavity only. 

At the SCF level of approximation, the search for the optimal wave function ~0 
is replaced by that of the optimal density matrix P. The quantity to be minimized 
is then 

AS~S(P) = E~(P) + 1/2E~-S(Q) + A s, (42) 

where Q is depending on P and A s is a constant term relative to the solvent 
alone. In this expression we can replace the last two terms by the sum of E~ s 
and a contribution of the polarized solvent AS+AA s (i.e. the term - 1 / 2 E  s-s is 
considered as the solvent polarization AA s [11]) so that A s~s is the free energy 
of the s-S system, S being polarized by the solute fixed in a given nuclear 
configuration. 

The variational calculus leads to the general expression of the effective Fock 
operator [22] taking account of the solvent 

0:k(P) = OAS~SloP. (43) 

By developing the total free energy A sUs as indicated above we derive the more 
explicit expression 

Fk(P) = FI(P) + 1/2(OE~-s/op), (44) 

where the first term is the Fock operator of the isolated solute and the second 
one is a potential correction due to the interaction with the polarized solvent. 
That can be verified immediately having in mind that, in a OAO basis (/z, t , , . . .  ), 
we have oQ,/aP,~ = - 8 ~ I j  i f / z  belongs to the center I:  thus, if we express 
E~, -s in term of the Green function according to the Eq. (39) we find 

1/20E~-s/aP~ = - ( G  Q) ,6~ .  (45) 

Taking account of the Eq. (41) we see that the diagonal elements of Fk contain 
a solvent correction which is the RF potential to which an electron on I is 
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submitted. Let us emphasize that one directly derives from the variational principle 
an expression of VR in terms of the symmetrized Green function or, in other 
words, that the free energy minimum of the solute-solvent system can be reached 
only by using the effective Fock operator defined in term of the symmetrized 
Green function. 

3.2. Simplified formulae 

Let us examine at first the strong approximation which results from the weak 
polarization assumption. The II matrix of the Eq. (21) is calculated by neglecting 
the contribution of the polarization charges in the second member of the Eq. (20): 
we thus obtain 

Q* = - (1  - I l k )  E Q.:o~i, (46) 
J 

where we have replaced the numerical factor 2 ( 1 - k ) / ( l + k )  by - ( 1 - I / k )  
because they are equal to first order for small k values. A satisfactory consequence 
of this small modification is that the Born relation (9) will be fulfilled for any k 
value. Equation (46) is a natural extension of  the GB formula [16, 17] where the 
local polarization charges depend linearly on all the source charges. We point 
out that if the matrix ~ is replaced by the unity matrix U we obtain the GB 
formula as a limit case. However, it is clear that this simplication, which amounts 
to suppose that each source charge is isolated in its own cavity, is not convenient 
for describing the solvated molecules. 

When the polarization is more important, the contribution just neglected in the 
Eq. (20) must be taken into account. Unfortunately, the computer calculation of 
the o3ji matrix elements is time and space consuming because it requires an 
averaging over each surface element. Thus, when the continuum model is coupled 
with semi-empirical techniques of calculation of the solute wave function, it may 
be acceptable, in regard to the number of  crude approximations made elsewhere, 
to estimate this matrix elements by the formula 

tfiji = wli (47) 

if the point J associated to j is carefully chosen. Let us point out that this relation 
holds for a single spherical cavity of surface Sa and center A as it results from 
the relation between the solid angles 

l)Na = 1/2~aa, (48) 

where N is any point of  Sa. 

3.3. Application to the study of chemical reactions in solution 

The case of  a cavity formed by the union of non-connected different volume is 
interesting for the theoretical study of the chemical reactivity of molecules or 
ions in solution. As E. Durand pointed out [30], this problem can be solved by 
means of  their integral equations which are always valid provided that the different 
volumes are clearly distinguished in it. As a consequence, for a cavity formed 
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by n distinct volumes, each of the equations that we derived above (e.g. the Born 
relation) must be replaced by a set of n equations (i.e. the GB formula which is 
rigorously valid in that case). 

From classical electrostatic, we expect that the solute-solute (s-s) interaction 
E s-~ between two species, X and Y, in a polarizable solvent will behave energy x-v 

as 1/kRxv when the intersystem distance Rxv becomes greater than a critical 
value Rc for which the solutes are trapped in two distinct cavities. 

In order to verify this property, we first define E~_~v by adding to the mutual 
interaction term in vacuum 

X Y  
E v a c  - V x-v - ~ ~, QrQJ 1/RIj (49) 

I J 

the mutual interaction of charges via the solvent 

X Y  
gS~ v x-v = ~ E Q, GIjQJ (50) 

I J 

according to the Eq. (39). 

Using the definitions (40) and (38), we may write 

a l j  t t = 1 / 2 ~  ( n l k r ~  + r ,kn~ , ) .  (51) 
k 

In the present case however, the matrix ~o and ~5 defined by the Eq. (18) and 
(19) are bloc diagonal because the solid angles by which a surface element of X 
(resp. Y) is subtended from any point of  Y (resp. X) vanish identically. We 
conclude that the II matrix defined by Eq. (22) is also bloc diagonal. Thus, for 
two points I and J belonging respectively to X and Y, we have 

G,j = 1/2 nf r ,+ r ,/1u (52) 

and, taking account of  the definition (21), we consequently obtain from the 
Eq. (50) 

X Y  X Y  

ES:~]~ = 1/2 ~. ~ Q*kFkjQj + 1/2 Z Y. Q,F'nQ*. (53) 
k J 1 1 

This is no no more than one half the s-S (Y-X plus X-Y) interaction energy in 
agreement with the relation (42). 

For sufficiently large intersystem distance, say Rxy>>Rc, we have then 
approximately 

E s~ 1/2(Q*xQy+ QxQ*y)I/Rxy (54) 

and, taking account of the set of Born relations like Eq. (9), the interaction energy, 
sum of Eqs. (49) and (54), is found to be QxQy/kRxy as expected. 
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4. Discussion 

Our aim is to account for the solvent effects by considering as well as possible, 
although in an approximate way, the shape of  the solute. Rather than to use 

analytical  but also too simple surfaces (as are spheres or ellipses) and in order 
to deal with a representation of  the cavity which would be together tractable and 
realistic enough, we choose to define it as a system of  spheres of radii R~ the 
centers of which are located at the positions I of  the solute charges. With this 
assumption, there is a one to one correspondence between each point jr and a 
surface element Si defined in Eq. (10). The adjustment of the parameters R~ to 
get the effective volume of  the solute has been discussed previously [14]. In the 
same paper, the authors indicated how to use the Korobov's grid technique for 
numerical computation of surface integrals: this method can be applied for 
estimating the elements of  the matrices r r and F. 

As it comes out from the Eq. (2), (4) and (5), a proper account of  the s-S 
interaction energy only necessitates the knowledge of the polarization charge 
density on the surface of  the solvent cavity. From a physical point of view, that 
results from both hypotheses: the dielectric homogeneity and the localisation of 
the source charges inside the cavity. This contrasts with our previous work [22] 
in which we assumed two kinds of  polarization charges: the "interhal and the 
external" ones. In fact, it appears that the introduction of the external charge 
concept was only an artefact for a priori maintaining the validity of the Born 
relation for the total charges. Simultaneously, this invalidates the interpretation 
of  the desolvation effects as a polarization charge transfer from an internal to an 
external solvation shell [31], at least in the framework of  the continuum model 
that we have defined from the beginning. In respect of this point, we must add 
that the presence of  source charges inside the medium [15] is incompatible with 
the consideration of the only surface polarization density: however, the problem 
can be solved by introducing an additional potential into the solute hamiltonian 
which constrains the source charges to remain inside the cavity [12]. 

We have shown in the section 3.2 how simplified formula could be derived by 
successive approximations. The simplified formula (46) can be compared with 
other empirical approaches. If we remember the sum rule (24) for the r matrix 
elements, we may rewrite the Eq. (46) 

where, as stated above, we have identified the indices I and i We recognize, in 
the first term of  the second member, the expression 

iQ* = - (1  - 1/k)Q,(1 - f t )  (56) 

defining the internal polarization charges of the extended GB (EGB) formula 
[22]. The merit of  the new formula (55) with respect to the original one is to 
provide an explicit expression of the neighbourhood factor f~ which, in some 
previous works [4, 32], was only estimated with the aid of the atomic orbitals 



The empirical reaction field approximations 517 

overlap integrals. Moreover, the validity of the Born relation for the total charges 
directly proceeds from the presence of the second term in the Eq. (55) which 
depends on the charges Qj at the points J r L In this respect, the formulae that 
we propose significantly differ from the other attempts for improving the GB 
formula [21, 22, 33, 34]. 

They also provide a new explanation of the desolvation effect which can be 
presented in a simple way by considering the example of two monocentric solute 
species A and B, with opposite charges, the distance RA~ of which is varying 
from infinity to zero. When RAB is very large, A and B are the centers of two 
spherical cavities SA and SB, with radii RA and RB, and there is a stabilizing 
(solvation) solvent effect given by the GB formula. A destabilizing (desolvation) 
solvent effect appears when Rga becomes smaller than Rc = RA+ RR, which is 
the critical value for which SA and SB overlap, giving rise to non-vanishing values 
of the solid angles f~gB and f~na. Then, both polarization charges Q*A and Q* 
are modified by the influence of the charges (source and polarization ones) of 
the other center. This modification is responsible of a destabilization (desolvation) 
with respect to the energy given by the GB formula. If we suppose that RA > RB, 
the sphere SB is totally included in SA when RAB < RA--RB. In this case, the 
unique cavity SA contains two opposite charges and the polarization charge Q* 
vanishes: thus the desolvation is maximum and there is no more solvent effect. 
As a result, the total free energy curve can display two stationary points separated 
by a barrier [31]. 

We have seen in Eq. (54) that the correct behaviour of the ionic pair interaction 
energy at large distances is a direct consequence of the Born relation provided 
that the Green function has been adequately defined as in Eq. (40). In order to 
precise the origin of the failure of the EGB formula [22], we will remake the 
analysis of the s-s interaction energy as it has been done in the section 3.3. The 
EGB Green function is defined in term of the neighbourhood factor f~ by 

(~u = -(1 - 1/k)((1 - f i ) .  (1 -fi)+ftfi).y,.~, (57) 

where the Yu are the CNDO/2 electronic repulsion integrals. 

Taking account of the external polarization charge definition, eQ,= 
-(1 - 1/k)fiQI, we can derive the interaction energy between two solvated species 
X and Y via the solvent 

ES~ ,- O t O , - Z E ' O * O J - E  Q[O* 
\ I J  I J  I J  

�9 �9 ,r , r  ( 5 8 )  

The s-s interaction energy is obtained as before by adding the mutual interaction 
terms in vacuum; at large distance, we get the approximate form 

E S-s x_v~ QxQv/  k R x v _  (eQ,xQv + Q x . Q ,  + 2k/  ( k _ ~ .~ . 1) Qx Q v ) l / R x v .  (59) 
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We see that there remains a spurious term which only disappears when the total 
external charges vanish. This fact explains why the behaviour of a system formed 
by two monocentric species is apparently correct (at large distance, the factors 
f~ vanish and so do the external charges). However, the disagreement is par- 
ticularly evident when we study the interaction of any solute X with a monocentric 
one B for very high values of the dielectric constant [4]: we have now 

ES-S x-B ~ - e Q * x Q a /  R x a  (60) 

that is an unexpected attractive interaction in the case of ionic species having 
opposite charges. Clearly, the unrealistic external charge concept is mainly 
responsible of this anomalous trend. 

Concerning the Green function definition, we must mention that, in our preceding 
work [22], we imposed the symmetry property by an adequate adjustment of the 
mean interaction integrals Frj which were related to the symmetric matrix y of 
the electronic repulsion integrals. By this way, we avoided the problem of defining 
the shape of the cavity. In the case of weak polarization, where the II matrix is 
a product of ~o by a numerical factor depending on k, this procedure would 
consist to define the E matrix by 

F = yw (61) 

in such a way to obtain the following symmetric Green matrix 

= -(1 - 1/k) r (62) 

in the general case however, 11 is not factorizable and its use instead of w in 
Eq. (61) would give mean interaction integrals depending on the dielectric con- 
stant. Thus, the symmetrization procedure that we propose in Eq. (40) seems to 
be the one, only, satisfactory in general. 

5. Conclusion 

We have shown how simplified formula can be derived through successive 
approximations from the basic integral equations which implicitly give the 
rigorous s-S interaction energy. The stronger approximation gives the well known 
GB formula, the weaker one amounts to a numerical treatment the accuracy of 
which can be theoretically indefinitely increased. Between these extreme cases, 
we propose intermediate solutions the simpler of which seem particularly well 
suited to be adapted to the semi-empirical methods of quantum chemistry. We 
hope that the more elaborate formula will be of value for computations by 
ab-initio m e t h o d s .  

Acknowledgements. The author is very indebted to his colleague, Dr. P. Clavede, for illuminating 
discussions and helpful suggestions. 
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6. Appendix. Statistical study of a system of two molecular interacting groups in 
thermal equilibrium 

We consider a system (s w S) containing two interacting groups, one (s) formed by solute molecules, 
the other (S) formed by solvent molecules. This system is maintained in thermal equilibrium at a 
fixed temperature T and we assume that the nuclei are classical particles governed by Boltzmann's 
statistic. On the other hand, the electrons are treated as quantum particles the motion of  which is 
temperature independent: thus, the electron cloud can be described by a wave function that, in a 
first step, we assume to be separable ( ~  = ~qb) and unpolarizable. After quantum averaging of  the 
electronic motion in the Born-Oppenheimer approximation, the nuclear hamiltonian of  (s u S) in the 
phase configuration (p, x; P, X) can be written 

H~S(p, x; P, X) = HS(p, x)+ us-S(x; X)+ Hs( p, X). (A1) 

In this expression, H~(p, x) (resp. Hs(p ,  X)) is the hamiltonian of  the isolated solute (resp. isolated 
solvent) group lying in the configuration (p, x) (resp. (P, X)).  Each hamiltonian H is a sum of  a 
kinetic term T and of  a potential term U depending only on the generalized space coordinates x. 
The third term of  the Eq. (A1) is the interaction potential between both groups which depends only 
on the space coordinates. 

Although the potential functions are parametrically depending on the electronic wave function ~qb 
of  (s u S) the simple notation U s, U s and U s-s will be employed instead of  the more explicit ones 
U~, U s and U,pa,~-s that we will use only if needed. 

In what follows, it may be useful to distinguish, among the various space coordinates x, the coordinates 
tr which define the position and the orientation of  the solute molecules and the internal coordinates 
r which determine the relative positions of  their nueleL With these notation conventions in mind, 
we have 

n~(p, x) = T(p, x) + U~(r). (A2) 

6.1. Definition of an effective hamiltonian for the system (s) 

If we consider the canonical ensemble consisting of  a large number of  systems like (s u S), we know 
that the free energy of  (s u S) can be derived from the canonical ensemble partition function which 
is (we neglect an unessential constant factor) 

zsvS=IIe--H~S(p'x;P'X)/kT dpdxdPdX, (A3) 

where the x and X integrations are taken over the volume V of a container: our aim is to define an 
effective hamiltonian such that 

zs~S=IIe--H~n(P'x)/kT dpdx. (A4) 

By using the expression (A1) of  the total energy, we may write 

Z~'-'S= f e-~S(P'~)/k'r f e-~Hs(p'x)§ dedXdt, dx. (A5) 

We emphasize that, for sufficiently strong dilution, the sum over the solvent phase coordinates is a 
function of  r only because it is invariant under any translation or rotation of  the solute molecules. 

Then, using a classical method, it is useful to introduce the auxiliary partition function z~n~(e) defined 
as [1] 

e (Hs(P'x)+Us-s(x;xl)/kT dP dX 

(A6) ZI~(r) = �9 ,. 

J e-HS(p,X)/kT dP dX 
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or by [2] 

z l n s ( r )  : ( e  - us'S(x;x)/kT)o , (A7) 

where the notation ( )0 means that the mean value has been calculated with the canonical partition 
function of the isolated system (S). 

If we introduce the partition function of the solvent alone Z s, which is no more than the denominator 
of the expression (A6), we have 

= Z s f e -H~(p'x)/kT ZInS(r) dp dr. (A8) Z~US 

Thus, if we define by AI~(r) the free energy associated to Zl~(r) as follows 

Axn~(r) = - k T  log ZI"~(r) (A9) 

we obtain for the partition function of (s u S) 

f e -(Hs(p'x)+Alns(r)+As)/kT dp dx, (A10) Z ~ S =  

where A s is the free energy of the solvent alone. 

We see that this partition function can be calculated by associating to each phase configuration (p, x) 
of (s) a temperature dependent effective hamiitonian defined by 

HSe~r(p, x) = H~(p, x) + AInS(r) + A s, (Al l )  

where the influence of (S) is introduced through the free energy term AlnS(r) [35, 36]. 

6.2. Physical meaning of the free energy AInS(r) 

Let us now consider (s) in the fixed relative space configuration (to). In other words, we assume that 
the system remains in the space configuration (to) even when it is submitted to the field of (S). 
Keeping in mind that the sum over the solvent phase coordinates in the Eq. (A5) is a function of r o 
only, we find that the partition function is 

zsuS(ro)= f e-n~(p, xo )/kT dpdo f e-(ns(p'x~+u~-S(Xo;X))/kr dPdX, (A12) 

where the sum over the solute coordinates includes only the values p of the conjugate momenta 
compatible with the invariance of the configuration (to) (i.e. translation or rotation of the solute 
system). 

We deduce that the free energy of (sw S), with (s) fixed in the relative space configuration (r0), is 

AS-S(r~176 f e--H~(P'%)/kT d p d o - k T l o g  f e-(nS(l'X)+v~-s(x~ dPdX. (AI3) 

If, in the preceding expression, we neglect the s-S interaction term, we obtain the free energy A~S(ro) 
of the isolated systems (s) and (S). Thus, the variation of the free energy which is due to the interaction 
between (s) in the relative space configuration (r0) and (S) is 

AS~S(ro)- A~US(ro)= - k T  log f e -(Hs(P'x)+Us-s(%;x))/kT dP dX + kT log f e--HS(p,X)/kT dP dX. 

(A14) 

By using the Eqs. (A6) and (A9), we verify easily that this free energy variation is identical to AI~(ro). 
The quantity AInS(ro) has been called "insertion free energy" [1, 2]: it is the variation of the total 
free energy which results from the insertion in (S) of the system (s), fixed in the relative space 
configuration (r0). 
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6.3. The weak interaction approximation 

We obtain directly from the Eqs. (A7) and (A9) 

A1nS(r) = - kT log (e-  v~-s(~; x)/kT)o" (A15 ) 

As the mean value is calculated with the partition function of  the isolated system (S), there is strong 
contribution due to the (s-S) repulsion forces at short distance. This gives rise to the formation of  
a cavity inside the solvent: the part of A ~nS which is associated to this step is the cavitation energy 
[5]. Once the cavity is formed, the remaining (s-S) interaction (mainly the electrostatic one) is weak 
and we may calculate the corresponding part of A ~ in an approximate way. Thus, expanding the 
expression (A15), we obtain 

((cr~-~(x; x))%~ (u~-S(X; X))o + (A16) 
AInS(r)=-kTlog 1 kT 2k2T 2 ,] 

by neglecting the terms of higher order. 

The second term of  the development vanishes because it represents the averaged value of  the 
electrostatic interaction energy between (s), fixed in the configuration (r), and the isolated system 
(S), which is supposed to remain homogeneous and isotropic although a cavity has been formed in 
it. Thus we can wwrite 

AIn~(r) = ((U~-S(x; X ) ) 2 ) ( ~  (A17) 
2kT 

If  we consider now the mean value 

( U~-S(x; x)> 

f e-,-,~(,,,,,) #do f e-(~(e,x)+o'-~(~;x~)/,,T u~-S(x; x) ae ax 
(a18) 

- Ie_n~O,,X) dpdole_(ns(p,x)+trs_scx;x))/kTdPdX 

calculated by averaging over all the phase configurations of (S) in interaction with (s), we find, after 
expansion of  e x p ( -  u~-S(x; X) /kT)  

((US-S(x; X))2)o 
(us-S(x; X ) ) =  (A19) 

kT 

Comparing the expressions (A17) and (A19), we can derive an approximate relation between AInS(r) 
and the mean s-S interaction energy [5] 

(v~-S(x;X)) 
AI~(r) - (A20) 

2 

Thus, we can write the Eq. (A l l )  

H~(p,  x) = HS(p, x)+ 1/2( US-S(x; X ) ) + A  s. (~1)  

6.4. The case of electronically polarizable species 
s s s S  As we pointed out at the beginning of  this appendix, the potentials U,p, U~ and U~-~ are parametrically 

depending on the electronic wave functions ~p and qb of  (s) and (S). If these functions are different 
from the optimal ones, ~Po and qb0, associated to the isolated systems (s) or (S), the hamiltoninan 
H~ in the Eq. (A l l )  is that of  the polarized solute and the free energy A s of  the solvent alone has 
to be interpreted as that of  the polarized, but not oriented solvent. 

s-S . However, the calculation of  A ~n~ has to be reexamined. In effect the term ( U ~ ( x ,  X))o, which 
appears in the Eq. (A16) does not vanish any more: it represents the mean electrostatic interaction 
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between the polarized solute and the polarized, but not oriented solvent. Thus, we find in place of 
the Eq. (A17) 

s - S  . 2 s - S  . x)) )o- (( u~.(x, X ) ) o )  2 
. . . . .  s . ( (  u ~ . ( x ,  (A22) A ( r ) - ( U * ~ 1 7 6  2kT 

and in place of the Eq. (A19) 

2 s - S  . x)) )o- ((U~*(x, X ) ) o )  2 ~-s . (A23) ( U~.(x ,  X)) = ( u~-g(x; X))o (( u~-*s (x; 
kT 

Now we obtain the relation [37] 

A ~ n ~ ( r )  = ~-s  . ~-s  �9 u~(x,S-s. ( U.,~(x, X)) 0 + 1/2(( U**(x, X)) - ( X))o) (A24) 

instead of the relation (A20). 

If we remember that ~-s (U.~(x;  X)) is the mean electrostatic interaction of the polarized solute with 
the polarized and oriented solvent, we see that the expression (A24) is a sum of two contributions: 
the first one, due to the polarized, but not oriented solvent, the second due to the oriented, but not 
polarized solvent. 

It must be emphasized that the polarization part, which does not depend on the temperature, is not 
affected by an one-half factor as it is the case for the temperature dependent part corresponding to 
the solvent orientation. However, if we use the results of the reaction field theory [26], (i.e. if we 
assume that �9 is depending on ~o), the work of polarization of the solvent is 

A~S _ A,~0s _- AA.S _- -1/2(  U~-S(x; X))0 (A25) 

so that we get 

I n s  S s - S  A + A A ~ = I / 2 ( U .  (x;X)). (A26) 

As a consequence, the Eq. (A21) is valid in general, provided one consider H~ as the hamiltonian 
of the polarized solute, ( u~-S(x; X)) as the mean electrostatic interaction between the polarized 
systems (s) and (S) and A s as a constant quantity characteristic of the isolated solvent. 
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